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Natural killer cell-related gene signature 
predicts malignancy of glioma and the survival 
of patients
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Abstract 

Background:  Natural killer (NK) cells-based therapies are one of the most promising strategies against cancer. The 
aim of this study is to investigate the natural killer cell related genes and its prognostic value in glioma.

Methods:  The Chinese Glioma Genome Atlas (CGGA) was used to develop the natural killer cell-related signature. 
Risk score was built by multivariate Cox proportional hazards model. A cohort of 326 glioma samples with whole 
transcriptome expression data from the CGGA database was included for discovery. The Cancer Genome Atlas (TCGA) 
datasets was used for validation. GO and KEGG were used to reveal the biological process and function associated 
with the natural killer cell-related signature. We also collected the clinical pathological features of patients with glio-
mas to analyze the association with tumor malignancy and patients’ survival.

Results:  We screened for NK-related genes to build a prognostic signature, and identified the risk score based on 
the signature. We found that NK-related risk score was independent of various clinical factors. Nature-killer cell gene 
expression is correlated with clinicopathological features of gliomas. Innovatively, we demonstrated the tight relation 
between the risk score and immune checkpoints, and found NK-related risk score combined with PD1/PDL1 patients 
could predict the patient outcome.

Conclusion:  Natural killer cell-related gene signature can predict malignancy of glioma and the survival of patients, 
these results might provide new view for the research of glioma malignancy and individual immunotherapy.
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Introduction
Glioma is the most common and malignant primary 
brain tumor, the prognosis of glioma patients varies 
greatly and mainly depends on the clinical characteristics 
[1]. Glioblastoma multiforme (GBM) is the most lethal 
and malignant brain tumor, the median overall survival 
of GBM is around 15 months despite surgery and com-
bined radio- and chemo-therapy [1]. Recently, increasing 

evidence showed that immune infiltration was correlated 
with the prognosis of the glioma, precise therapies like 
target therapy and immunotherapy are promising ways 
to treat GBM. Immune-checkpoint inhibitors, Chimeric 
antigen receptor (CAR) T cell therapy, Natural killer cell-
related therapies, Virotherapy, and Dendritic cells (DC) 
vaccination were the most encouraging areas in GBM 
therapy [2].

The molecular classification of central nervous sys-
tem tumors in 2016 remarkably improved the diagnosis 
and prognosis prediction by IDH, MGMT methylation, 
TERT, TP53 et al. [3]. However, more precise signatures 
are needed. Recently, a few gene expression-based risk 
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signatures in autophagy, hypoxia, ferroptosis, and glucose 
has explored their value in predicting prognosis of glioma 
patients [4–7]. Construction of the immune signature in 
the survival and malignancy prediction of glioma may 
lead to a more complete understanding of tumor micro-
environment and immunotherapy.

Natural killer(NK) cells are innate cytotoxic lympho-
cytes encompassing distinct populations based on CD56 
intensity in humans and involved in the surveillance and 
elimination of cancer [8]. NK cells could recognize the 
major histocompatibility complex (MHC) molecules, 
and kill target cells if they lack of MHC molecules on 
their surface. As one of the most cutting-edge immuno-
therapeutic strategies, NK cells related therapies such 
as adoptive NK cell transfer, chimeric antigen receptor-
expressing NK cells (CAR-NKs), bispecific and trispecific 
killer cell engagers (BiKEs and TriKEs) have emerged as 
a promising therapeutic target in glioma [9], breast can-
cer [10], lung cancer [11], colon cancer [12], prostate can-
cer [13] and hematological malignancies [14]. Although 
great progress has been made for natural killer cell-based 
therapy in preclinical and clinical research, there are 
many things we need to do to advance the research. For 
instance, we have learned how NK cells employ to recog-
nize and eliminate tumor cells and how cancer cells can 
also educate and evade NK cell responses [11, 15], little is 
known about NK cells postsurgical dysfunction and why 
it works well in hematological malignancies while not 
good enough for solid tumors [16].

A couple of studies have investigated that the NK cells 
were one of the least numerous immune cell popula-
tions infiltrating the tumour. They represent around 
2.11% of the total and the most abundant phenotype is 
CD56dimCD16neg [17]. Surprisingly, those limited NK 
cells were potent effectors against brain tumor. Lee SJ 
et  al. showed that human NK cells had a strong effect 
against GBM and could prevent systemic metastasis of 
GBM [18]. Mukherjee S et al. [19] demonstrated that cur-
cumin phytosome induced natural killer cell-dependent 
repolarization of GBM tumor-associated microglia/mac-
rophages to kill GBM and their stem cells. Scientists also 
found that virotherapy is limited partially by an antiviral 
NK cell response involving specific natural cytotoxicity 
receptors to enhance GBM virotherapy [9].

The prognostic significance of NK cells’ activity has been 
demonstrated in patients with a few solid tumours [20]. NK 
cells signature has been found to be a determinant indica-
tor for pathological response and extended overall sur-
vival in post therapy advanced rectal cancer patients [21]. 
A score system which was assessed by 10 genes related to 
NK cells significantly revealed the heterogeneity within 
the stage IV colorectal patients, warranted the importance 

of further stratification of those patients [22]. Ombretta 
Melaiu et  al. demonstrate that NK cells and DC related 
gene signatures were not only strongly correlated with 
the expression of PD-1 and PD-L1 but also able to predict 
prognosis of neuroblastoma patients [23].

However, little is known about NK cells signature in the 
malignancy and prognosis in glioma [24]. In the current 
study, we screened for NK-related genes and built a prog-
nostic signature. Univariate and Multivariate Cox regres-
sion analysis was applied to identify and verify the risk 
score based on the signature. We analyze the NK-related 
risk score and various clinical factors, including age, sex, 
IDH1 mutation, and GBM subtype, etc. GO and KEGG 
were used to reveal the biological process and function 
associated with the natural killer cell-related signature. 
Innovatively, we combined the risk score with immune 
checkpoints to sort out the glioma patients for patient 
prognosis prediction.

Materials and methods
Data collection
The mRNA sequencing data of genes encoding calmodu-
lin dependent proteins was downloaded from The Cancer 
Genome Atlas (TCGA) dataset which was set as the train-
ing cohort. The mRNA sequencing data from The Chinese 
Glioma Genome Atlas (CGGA) dataset was set as the vali-
dation cohort. Corresponding clinical information was also 
downloaded.

Gene signature building
We downloaded 134 NK cell related genes from immport 
(https://​www.​immpo​rt.​org/​resou​rce) and 18 NATURAL_
KILLER_CELL related GO pathways from MSigDB (The 
Molecular Signatures Database) [25]. After eliminating 
duplicates in the two databases, a total of 244 genes were 
ready for analysis. Univariate Cox analysis was firstly per-
formed via R package ‘survival’, and genes with P values less 
than or equal to 0.1 were retained. To assess whether the 
risk score is independent of other clinical factors, multivar-
iable Cox proportion hazard regression models were per-
formed with the R package ‘glmnet’ [26, 27]. By combining 
the rank of p values of the univariate Cox regression analy-
sis and Kaplan-Meier method in CGGA, three genes (FDR 
< 0.05) were retained to developed risk score as a linear 
combination of the gene expression level (expr) weighted 
by the regression coefficients (Coeffs) derived from the 
univariate Cox regression analysis. The risk score for each 
individual was calculated as follows:

We determined cutoff points to significantly split (log-
rank test P value < 0.05) the training group into low/high 

Risk score = exp rgene1 × βgene1 + exprgene2 × βgene2 +⋯ + exprgenen × βgenen

https://www.immport.org/resource
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risk score groups [28]. The same βgenen that represents the 
coefficient of the corresponding gene was applied to the 
validation cohort.

GO and KEGG pathway analyses of DEGs
The genes between NK cell-related high-risk and low-
risk groups were screened via the R package ‘limma’. The 
gene with a absolute value of log2 fold change (FC) > 1 
and adjusted p < 0.05 was identified as DEG. R languagt 
‘clusterProfiler’, ‘colorspace’, and ‘enrichplot’ package was 
usd to perform GO and KEGG analysis. GO analysis with 
functions including molecular function (MF), biologi-
cal pathways (BP), cellular component (CC), and KEGG 
pathway analyses were performed to the DEGs. Kaplan–
Meier plots and the log-rank test used to estimate the 
survival rate between the low- and high-risk groups by 
using R package ‘survminer’ [29]. P  < 0.05 and q < 0.05 
were considered to have a significance.

Statistical analysis
R language (version 3.5.0, https://​www.r-​proje​ct.​org/) 
was the main tool for data analysis and figure drawing. 
The log-rank test was applied to compare overall survival 
difference between different groups. The ‘survival’ pack-
age was used for univariate and multivariate Cox regres-
sion analysis. Correlation heatmap were drawn using R 
packages ‘corrplot’. Kaplan-Meier estimates were used for 
survival analysis, with a two-sided log-rank test. The Stu-
dent’s t-test was employed to compare two groups and 
ANOVA analysis was performed to compare multiple 
groups. P < 0.05 was considered as a statistical difference.

Results
Construction of natural killer cell‑related gene signature
To characterize the Natural killer cell-related gene 
expression in gliomas, we examined the RNA-seq data 
of glioma patients from CGGA and TCGA datasets. 
We found 134 Natural Killer cell-related genes from 
immport. Subsequently, 397 genes belong to 18 GO 
pathway (GOBP_NATURAL_KILLER_CELL_ACTI-
VATION, GOBP_NATURAL_KILLER_CELL_ACTI-
VATION_INVOLVED_IN_IMMUNE_RESPONSE, 
GOBP_NATURAL_KILLER_CELL_CHEMOTAXIS, 
et  al.) related to natural killer cell was collected from 
MSigDB. After removing the replication genes, 244 
genes were left. Details on the Natural Killer Cell-
Related genes are presented in Supplement Table  1 

and Table  2. By combining the rank of p values of the 
univariate Cox regression analysis and Kaplan-Meier 
analysis, three genes (FDR < 0.05) were retained. A 
gene-based prognostic model was then established to 
evaluate the risk of each patient as described in the 
methods. Consequently, a three-gene signature was gen-
erated, and signature risk score was calculated as: risk 
score = (ULBP1*0.048) + (CD70*0.016) + (BID*-0.002). 
To validate this gene set, we also calculated patients’ risk 
scores of the CGGA cohort with the same regression 
Coeffs.

Overall survival status of glioma patient based on gene 
signature risk score in CGGA and TCGA datasets
Patients with different kinds of glioma were divided into 
two groups based on their median risk scores. Their per-
centage of alive patients was 51.6% in the low-risk group 
versus 21.3% in the high-risk group in the CGGA data-
set (Fig. 1A). Similarly, alive patients were 83.3% in low-
risk group versus 52.5% in high-risk group in the TCGA 
dataset (Fig. 1B). The Kaplan–Meier curve for the CGGA 
dataset showed that the high-risk patients had signifi-
cantly shorter OS than low-risk patients in the glioma 
(Fig.  1C), WHO low-grade glioma, and GBM (Fig.  1C). 
The consistency of results were validated for the TCGA 
(Fig.  1D). The association between OS and genes used 
to generate risk score were demonstrated individually 
(Fig. 1E).

Nature‑killer cell gene signature is associated 
with clinicopathological features
The heatmap showed that Nature-killer cell gene expres-
sion was correlated with WHO grade, IDH1 mutation, 
MGMT promoter methylation, 1p19q co-deletion, tumor 
subtype in glioma patients in CGGA (Fig. 2A) and TCGA 
datasets (Fig.  2B). Those data were also confirmed by 
Cox regression analysis (Table  1 and Table  2). We used 
the non-parametric Spearman correlation test to calcu-
lated the correlation between RS and clinical pathologic 
characteristics, and demonstrated that RS was signifi-
cantly related with patients’ clinical characteristics, such 
as WHO grade, tumor subtypes, and IDH1 mutations 
(p < 0.001) in both two databases (Table 3 and Table 4). 
After mining the CGGA dataset, the RNA expression of 
Natural-killer cell gene was higher in high grade glioma 
than WHO grade II patients (Fig. 3A), higher in the IDH 
wild type than IDH mutant glioma (Fig.  3B). It was the 

Fig. 1  Prediction of outcome of the gene signature for patients based on the risk score. A, B Alive patients percentage was higher in low risk group 
than in high risk group in CGGA dataset and TCGA dataset. C, D Patients in high risk group had a significantly shorter OS than in low riskgroup 
in both of the CGGA databaset and the TCGA dataset. E The association between OS and genes used to generate risk score were demonstrated 
individually

(See figure on next page.)

https://www.r-project.org/
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Fig. 1  (See legend on previous page.)
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Fig. 2  Nature-killer cell gene signature is associated with clinicopathological features in CGGA and TCGA datasets. A Heatmap of the correlation 
between risk score (RS) and clinicopathologic features in CGGA dataset. B Heatmap of the correlation between risk score (RS) and clinicopathologic 
features in TGGA dataset

Table 1  Univariate and multivariate Cox regression analysis of clinical pathologic features for OS in CGGA​

CGGA cohort

Univariate analysis Multivariate analysis

Characteristics P-value HR 95% CI P-value HR 95% CI

Age < 0.001 1.033 1.02–1.047 0.938 1.001 0.985–1.017

Gender 0.621 0.931 0.7–1.237 0.897 0.979 0.707–1.356

Grade < 0.001 2.017 1.736–2.344 < 0.001 1.455 1.199–1.767

Subtype < 0.001 1.631 1.428–1.862 0.007 1.281 1.069–1.535

IDH1 < 0.001 0.367 0.27–0.501 0.118 0.721 0.479–1.086

Radio < 0.001 0.505 0.368–0.694 < 0.001 0.49 0.345–0.696

Chemo 0.001 1.658 1.219–2.255 0.098 1.343 0.947–1.905

Risk score < 0.001 17.093 6.993–41.783 0.048 4.1 1.009–16.652

Table 2  Univariate and multivariate Cox regression analysis of clinical pathologic features for OS in TCGA​

TCGA cohort

Univariate analysis Multivariate analysis

Characteristics P-value HR 95% CI P-value HR 95% CI

Age < 0.001 1.073 1.061–1.084 < 0.001 1.066 1.049–1.084

Gender 0.462 0.9 0.681–1.191 0.68 1.08 0.749–1.559

Grade < 0.001 3.093 2.637–3.628 0.028 1.33 1.032–1.714

Subtype < 0.001 2.004 1.765–2.275 0.11 1.194 0.961–1.484

IDH < 0.001 8.561 6.228–11.768 0.17 1.616 0.814–3.21

MGMT promoter < 0.001 0.228 0.139–0.376 0.026 0.508 0.28–0.921

1p/19q < 0.001 2.964 2.17–4.047 0.5 1.165 0.748–1.816

Risk score < 0.001 1.126 1.099–1.154 0.007 1.066 1.018–1.117
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highest expressed in the Mesenchymal group when com-
pared with Classical, Neural and Proneural glioma types 
(Fig. 3C). These consistent results were also validated in 
the TCGA datasets (Fig. 3D-F). Moreover, univariate Cox 
regression and multivariate Cox regression of the signa-
ture of the natural killer-related genes were performed in 
the CGGA dataset (p < 0.001, univariate Cox regression; 
p < 0.05, multivariate Cox regression, Table 1). The inde-
pendence of the clinical prognostic significance of the 
signature in glioma. The risk score showed significance in 
both univariate and multivariate Cox regression. Similar 
results were also validated in the TCGA dataset (Table 2). 
The patients with a high-risk score had a markedly higher 
mortality rate than those with a low-risk score in these 
two datasets. Meanwhile, with an increase in glioma 
grade, the risk score increased.

GO and KEGG pathway analyses (gene functional 
characteristics related to risk scores)
To investigate the function of NK cell-related genes in GBM 
cells, we analyzed different functional enrichment between 
low and high-risk cases. TOP 20 pathway type, biologi-
cal process, cellular component, and molecular function 
were demonstrated by GO/KEGG enrichment respectively 
(Fig.  4A and B). The GO enrichment analysis showed the 

Table 3  The correlation between clinical pathologic features 
and RS in CGGA​

Characteristics Correlation coefficient P-value

Gender 0.115 0.068

Grade 0.582 < 0.001

Subtype 0.583 < 0.001

IDH1 −0.609 < 0.001

Radio −0.054 0.393

Chemo 0.195 0.002

Table 4  The correlation between clinical pathologic features 
and RS in in TCGA​

Characteristics Correlation coefficient P-value

Gender − 0.42 0.358

Grade 0.497 < 0.001

Subtype 0.606 < 0.001

IDH −0.687 < 0.001

MGMT promoter −0.434 < 0.001

1p/19q −0.561 < 0.001

Fig. 3  Nature-killer cell gene expression is correlated with clinicopathological features of gliomas. A The relationship of RNA expression of 
Natural-killer cell gene with glioma WHO. B IDH wild type have a higher expression level of NK related gene than IDH mutant type. CThe 
relationship of RNA expression of Natural-killer cell gene with glioma subtypes. D-F Consistent results were also validated in the TCGA datasets
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most enrichment pathway was phagosome; the most activated 
biological processes were neutrophil activation involved in 
immune response, neutrophil degranulation, neutrophil acti-
vation, neutrophil-mediated immunity; the cellular compo-
nents were largely enriched in extracellular matrix, endosome 
membrane, and adherens junction; the most enriched molec-
ular function was cell adhesion molecule binding (Fig.  4A). 
Similarly, the KEGG enrichment analysis confirmed that focal 
adhesion and Human T-cell leukemia virus 1 infection were 
the major activated pathways which were also enriched by GO 
analysis. The major biological process in KEGG were neutro-
phil-mediated immunity and neutrophil activation; the most 
enriched cellular component and molecular function were 
adherens junction, cell adhesion molecule binding and tran-
scription coregulator activity, all of which was similar to the 
GO analysis (Fig. 4B). Taken together, these results indicated 
that the difference between low and high-risk score of NK cell-
related gene signature were lines in immune-related adhesion, 
neurophil activation and T cell leukemia virus 1 infection.

Correlation analysis between risk score (RS) and immune 
checkpoints/NK marker genes
To understand the correlation between risk score (RS) 
and immune checkpoints/NK marker genes, we analyzed 
the data by correlation heatmap of co-expressed genes 
and found that gene signature risk score was related with 
PDL1, TIM3 and STAT3 in CGGA and TCGA datasets 
(Fig.  5A). As with the NK markers evaluated with the 

risk score, we demonstrated that risk score was corre-
lated with CD16, CD226, CD96 and CD112. In summary, 
the Nature-killer cell gene signature expression is closed 
related to immune-related pathways and cancer immu-
notherapy process (Fig. 5B).

Prediction of patient outcome based on the RS 
and immune checkpoint gene expression
To deeply figure out the status between the risk score, 
checkpoint gene expression and patient survival. We ini-
tially made a pearson analysis between PD1, PDL1 and 
risk score. As showed in Fig.  6A, the correlation coeffi-
cient of pearson analysis of PD1 and RS was 0.23 and 0.18 
in CGGA and TCGA datasets respectively, the correlation 
coefficient of PDL1 and RS was 0.10 and 0.38 in CGGA 
and TCGA. These data indicated that RS has a tight rela-
tion with PD1/PDL1 expression (Fig. 6A). Then, we strati-
fied the RS to low and high group and found that both PD1 
and PDL1 were higher expressed in high-risk score group 
than the low-score group by mining both CGGA and 
TCGGA datasets (Fig. 6B). Lastly, we sorted out the data 
to four groups to better understand the RS, PD1/PDL1 
and patient prognosis, Kaplan–Meier survival curves of 
OS among four patient groups showed that low-RS-low 
PD1 group as well as low-RS-low PDL1 had a better over-
all survival than other three groups (Fig.  6C). This data 
was verified by TCGA dataset (Fig. 6D). In summary, NK 
cell-related gene signature combined with PD1/PDL1 can 

Fig. 4  Gene functional characteristics related to risk scores. GO and KEGG analysis of differential genes between low- and high risk cases in two 
cohorts (A and B)
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be applied to predict patient’s prognosis, and low-RS-low-
PD1/PDL1 patients showed better survival outcomes.

Discussion
In this work, we investigated the association between NK 
cell-related gene signature and glioma. Firstly, we devel-
oped an NK cell-related signature and confirmed that it 
was closely associated with the overall survival of patients 
in the CGGA and TCGA datasets.

After screening, three genes are involved in NK cell 
biology and function. UL16 binding proteins (ULBPs) 
are natural killer group 2D (NKG2D) ligands which 
could hinder the activation of NK cells. Increased serum 
ULBP1 predicted reduced overall survival of hepatocel-
lular carcinoma patients [30]. ULBP1 also interacted 
with NKG2D to improve survival of gastric cancer 
patients by induction of adaptive immunity [31]. ULBP2 
functioned as a strong prognostic marker in malignant 

Fig. 5  Comparison of difference in immune status between high-risk and low-risk groups. Corrlation heatmap showed correlation analysis 
between risk score (RS) and immune checkpoints/NK marker genes in CGGA (A) and TCGA (B) dataset
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melanoma, p53-mediated increasing of cellular miR-34 
levels to control ULBP2 expression. Those data indi-
cated that tumor suppressors are also indirectly con-
nected with ULBPs [32]. Elevated expression of ULBP3 
was identified in a large amount of tumor cell lines and 
tumor tissues, it regulated the activity of NK cells against 
tumors and could be a prominent target for immuno-
therapy [33]. Taken together, ULBPs played a vital role 
in tumor biological function and patient overall survival.

CD70 belongs to the tumor necrosis factor (TNF) ligand 
family, and its only receptor CD27 is expressed on T cells 
and NK cells. Chronic costimulation of CD27-CD70 
interactions can led to lethal T cell immunodeficiency 
[34]. In contrast to normal tissue, CD70 is expressed in 
brain tumor cells, especially gliomas and meningiomas 
[35]. CD70 might affect tumor progression directly, or 
indirectly by influencing the immune response. Wis-
chhusen et al. identified that CD70-mediated apoptosis of 

immune effector cells may act as a novel immune escape 
pathway of malignant gliomas [36].

BH3-interacting domain death agonist (Bid), a pro-
apoptotic member of the Bcl-2 protein family, encodes 
a death agonist and regulate apoptosis. There are both 
pro- and anti-apoptotic proteins in Bcl-2 family and 
these proteins can bind to each other to form a complex 
network of homo- and hetero-dimers. All the memebers 
belong to anti-apoptopic Bcl-2 group could be able to act 
as oncogenes. Such as overexpression of Bcl-2 caused by 
chromosomal translocation lead to an increased inci-
dence of follicular lymphoma. In turn, pro-apoptotic 
Bcl-2 members are tend to inhibit tumors’ occurrence. 
For example, mutation of Bax increases tumourigenic-
ity of several cancers [37, 38]. BID is unique in the Bcl-2 
family since it links the extrinsic and intrinsic apoptotic 
pathway [39]. After the death receptors is activated, BID 
is cleaved by caspase-8 into an N-terminal p13 and a 
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Fig. 6  Prediction of patient outcome based on the RS and immune checkpoint gene expression. A Correlation coefficient of the RS and PD1/PDL1 
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C-terminal truncated BID (tBID) which could trans-
fers from cytoplasm to mitochondria and induces the 
release of cytochrome C, resulting in apoptosis [40]. Bid 
was also found to play crucial roles in inflammation and 
innate immunity by interplaying with nucleotide-bind-
ing and oligomerization (NOD) 1, NOD2, and the IκB 
kinase (IKK) complex [41].

Subsequently, we found that this signature could distin-
guish the clinical and molecular features of gliomas, includ-
ing WHO grade, TCGA subtype, IDH mutational status, 
1p19q co-deletion and MGMT promoter methylation. 
Based on the differentially expressed genes of the risk score, 
GO enrichment results indicated that the major difference 
between high -risk and low-risk score focused on virus 
infection, immune system, neuropil mediated immunity, 
cell adhesion. KEGG enrichment results also confirmed 
that the above immune- anti-apoptotic related functional 
and signaling pathways. These results suggested that low-
risk score NK cells related signature activated immune sys-
tem through immune cells infiltration and cell adhesion.

Immunotherapy has shown encouraging benefits for 
many cancer types. In the current study, we found RS 
was tightly related to NK CD markers, CD96 and TIGIT 
together with the co-stimulatory receptor CD226 
form a pathway which could enhance the immune 
response [42]. In addition, Sun H et al. [43] found that 
human intratumoral CD96+ NK cells are functionally 
exhausted and patients with higher intratumoral CD96 
expression exhibit poorer clinical outcomes. CD 16, also 
known as FcγRIII, is a differentiation molecule found on 
the surface of natural killer cells, which antibodies, such 
as cetuximab could mediate apoptosis by CD16 recep-
tors after the recognition [44]. NK cells are large granu-
lar lymphocytes of the innate immune system which can 
directly lyse infected or tumor cells [45, 46]. Increasing 
evidence demonstrated that NK cells played a vital role 
in killing GBM by different approaches like KIR, CD16, 
IFN-γ, TNF-α, NIKG2D, TGF-β, CAR-NK and NK-
exosomes [17, 46]. Clearly, NK cell-based immunother-
apy is more and more attractive for GBM treatment [2]. 
Our study showed RS was interconnected with CD16, 
CD226, CD96 and CD112, which could activate NK 
cells to kill glioma cells to achieve prolonged survival.

Immune checkpoints were the most promising treat-
ment targets against cancer. Thus, we investigated the 
correlation between RS with PDL1 and TIM3, which 
showed low RS linked high PDL1, high RS linked with low 
TIM3. Laterly, we combined checkpoints and RS to pre-
dict the overall survival of glioma patients, as expected, 
low-RS-low-PD1/PDL1 group gained the most prolonged 
OS. Therefore, high RS is recognized as an unfavorable 
feature of glioma. PD-1, an extensively studied immune 
checkpoint receptor, is expressed on immune cells to 

limit harmful immune responses and prevent overactive 
immune-driven pathology [47]. But this immune regula-
tion mechanism could led to prolonged chronic disease 
courses such as chronic viral infections and cancer since 
dysregulated inhibitory receptor expression on immune 
cells prevents the elimination of tumors and viruses. 
Furthermore, immunotherapy that block the inhibitory 
receptors PD-1 and CTLA-4 has been successful in the 
tratment of several cancers [48].

In summary, our research provided important prog-
nostic resources based on NK cell-related gene sig-
nature in glioma. It will contribute to the exploration 
of NK cell research to promote novel immunotherapy 
against glioma.
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